
dde: A Package for Solving Delay Differential

Equations

A J F Buckner

August 21, 2008

Contents

1 Introduction 2
1.1 The dde package . 2
1.2 Obtaining dde . 2
1.3 A Simple Model . 2

2 Basic Usage 5
2.1 Defining models . 5
2.2 Statements, Expressions and Names 6
2.3 State variables . 6
2.4 Parameters . 7
2.5 Auxiliaries . 7
2.6 Switches . 8
2.7 Table Functions . 8
2.8 Output . 9
2.9 Options . 10

3 Advanced Usage 11
3.1 Arrays . 11
3.2 Control statements . 12
3.3 User-defined Function . 13

4 Running dde 14
4.1 Invoking the programme . 14
4.2 Run files . 15
4.3 When Things Go wrong... 15

5 Example Models 16
5.1 Blowfly DDE Model . 16
5.2 Simple Lotka-Voltera Predator-Prey ODE Model 16
5.3 Kaibab Plateau Model . 17
5.4 Rinaldi’s Model of Love Dynamics 18
5.5 Delay logistic model . 19

1

Chapter 1

Introduction

1.1 The dde package

dde is a package for solving ordinary (ODE) or delay (DDE) differential
equations. It allows you to specify an ODE or DDE model in terms of
a simple text-based language. You can use the programme to solve the
system directly, or to generate C or Javascript code that can then be run
independently of dde. It is based on the solv95 package written by Simon
Wood: the numerical DDE solver is closely derived from Simon’s, however
the way that dde is used is completely different. Parts of this manual have
been lifted from Simon’s documentation for solv95.

dde is written in Objective-C and uses Apple’s Foundation classes. It
was written and compiled on an Apple Macintosh computer, but it may be
possible to compile and use it under Gnustep on Linux. I haven’t tried.

1.2 Obtaining dde

You can download both the source and binaries for dde from the web-site
http://www.ashley.buckner.co.uk/Software/.

1.3 A Simple Model

dde expects models to be defined in a text file. You have to edit it using a
text editor such as vi, emacs or even textedit. Don’t use a word processor like
Pages as it will stick lots of special formatting characters that will confuse
dde no end. I use Smultron. dde is case-sensitive, so you must type param
not PARAM or Param.

This is the DDE example model from the solv95 package written in dde.
Note that the syntax is fairly close to such packages as ode and xpp. The

2

model itself can be written:

dA

dt
= PAτ exp [− (Aτ/A0)]− δA

A(0) = N0

Aτ =

{
A(t− τ) if t > τ
0 otherwise

This model becomes

option tstart = 0.0, tstop = 300, outstep = .1

param P = 10.0 label="Product of max. fecundity and juvenile survival."
param tau = 12.0 label="Development time."
param delta = 0.25 label="Per capita death rate"
param A0 = 300 label="Fecundity decay constant."
param N0 = 100.0 label="Initial population."

var A = N0 delay scale=0.0
aux Alag

Alag = A(t - tau)
A’= P*Alag*exp(-Alag/A0) - delta*A

print t, A, A(t - tau)

Here, A is the dependent variable of the model (the number of adult
blowflies) whose initial value is N0 ; P = 10, tau = 12, delta = 0.25,
A0 = 300 and N0 = 100 are parameters; Alag is an auxiliary variable. The
option statement requests output every 0.1 time units, with integration pro-
ceeding from 0 to 300 time units. The results are shown in figure 5.1

3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300

A

Time

Blowfly DDE model

Adults

Figure 1.1: Numerical solution of the blowfly model

4

Chapter 2

Basic Usage

2.1 Defining models

A model in ddecan be defined as a system of equations of the form:

ds0

dt
= g0(s(t), s(t− τ0), s(t− τ1), . . . , t)

ds1

dt
= g1(s(t), s(t− τ0), s(t− τ1), . . . , t)

ds2

dt
= g2(s(t), s(t− τ0), s(t− τ1), . . . , t)

. . .

. . .

These define the dynamics of the model. In addition, dde allows you to
define:

• State variables and their intial conditions...

• Parameters that control the particular behaviour of the model. These
are constant across te lifetime of the model, but default values can be
defined which can then be changed by the user on a run-by-run basis.
These may also have labels attached to them;

• Auxiliary variables...

• Values to print out;

• States of the model where discontinuites in the state variables occur
(called switches);

• Functions of a single variables defined as a number of (x,y) pairs:
in keeping with system dynamics terminology, these are called table
functions;

5

• Options to control the programme, such as the start and stop values
of the independent value (’time’), how often to ouput results and the
dde23 integrator tolerance.

2.2 Statements, Expressions and Names

A dde model is composed of a sequence of statements. A statement must
end with a semicolon or a line-end. Some statements are evaluated once
to initialise parameters and set initial values of state variables, others are
evaluated every time the dde package needs to compute the avlues of the
right-handsides of your model equations. Apart from splitting statements
into initialisers and dynamic statements, dde does not sort equations: they
are executed in the order you specify. This means that variables must be
defined before they are used.

To tell dde that it is expecting a comment, start a line with either ’//’
or ’#’. dde will ignore the rest of the line.

The syntax for expressions in dde follows the C programming language.
The four arithmetic operators have their customary meanings, and the ^
operator can be used for exponentation: x^y returns x to the power of y.
dde also includes the ’ternary’ operator choice?value1:value2: if choice
is true then return value1 else value2.

In addition, dde gives the following mathematical functions: abs, sqrt
(square root), int (convert to integer), float (convert to floating point),
exp, log, ln, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh,
acosh, atanh, erf, xidz and zidz. Most of these should be self-explanatory.
The two functions xidz and zidz are useful for avoiding divide by zero
errors: they both take two arguments x and y, if y is non-zero then the
result is x/y; if y is zero then xidz returns x whereas zidz returns 0.

Names in dde follow the usual conventions: they must start with a letter
or the ’ ’ character. Subsequent characters must be letters, digits or ’ ’. All
variables and parameters must be declared before they are used.

2.3 State variables

The syntax for defining a state variable is:

state x[=expr1] [label="Label"] [delay] [scale=expr2]

Text in square brackets ([]) is optional. The text state may be replaced by
var. If you omit the initial value of a state variable in its declaration, you
must specify it later on:

state x
...
x = 1000

6

expr is a valid dde expression. It is the initial value of the state variable.
Variables may be given and (optional) text label to documents them. If a
state variable is to be a delay variable use the ’delay’ option. To evaluate
the past value of a delayed variable, the syntax is:

x(tdelay[, initvalue[, lagmarker]])

The lagged time at which the value of should be returned is tdelay. If tdelay
is less than the initial time value then the value initvalue is returned: if
initvalue is not specified then the default initial value is 0. The use of the
third argument lagmarker is fuly described in the solv95 manual.

Once you have declared a state variable, you need to define its rate of
change with an assignemt of the ’= form, e.g.

x’ = (x0 - x)/timedelay;

2.4 Parameters

Parameters are values which are defined at the start of the solution of a
model, and thereafter remain the same. The syntax for declaring a param-
eter is

parameter x[=expr] [label="Label"]

An alternative is to use param as an abbreviation for parameter. The
only option is an explanatory label.

2.5 Auxiliaries

Auxiliary variables are variables that are evaluated afresh every time the
right-handsides of the model equations are evaluated. They must be declared
before they can be used.

auxiliary a[=expr]

auxiliary may be abbreviated aux. Auxiliaries may be redefined:

auxiliary a=1.0
...
a = 2*a

7

2.6 Switches

To set up a switch:

on expr do
statement 1
...
statement n

end

The value of expr is checked at each integration step. When it passes from
positive to negative, the statements between do and end are executed in the
order specified. The statements must all be assignments: you can change
the values of state variables and parameters. It does not make sense to
redefine auxiliaries as these will be re-computed at the next step anyway.

Switches are a feature borrowed directly from solv95. Sometimes, it is
handy to be able to describe very fast processes that are effectively discon-
tinuous. For example, the rate of change of the value of my bank balance
is equal to my salary minus the rate at which I spend money. One way to
represent this in a model would be

balance’ = salary - expenditure

On a weekly scale, say, expenditure could be represented as a continuous
process. However, my salary is paid in monthly. Another way to represent
this would be to add my salary to my balance at the start of every month
using a switch

on -sin(2*3.14159265358*t) do
balance = balance + salary

end
...
balance’ = -expenditure

2.7 Table Functions

Sometimes it is handy to have a more flexible way of defining functions
rather than just in terms of the standard mathematical functions that dde
provides. It is nice to be able to ’draw’ a function. dde allows to specify a
function by telling it the values it takes a specified number of points. the
syntax is either:

table tab=INTERPNAME(\{x1, y1\}, ..., \{xn, yn\})

where the x’s and y’s are expressions (including constant values) to define
the points the curve must pass through or

8

table tab=regular INTERPNAME(y1, ...yn) [xmin=expr1] [xmax=expr2]

If all the x’s are equally spaced. the expressions expr1 and expr2 op-
tionally define the lowest and highest x’s.

The values of INTERPNAME defines method used to interpolate values
between x’s. It can be

• stepwise: the function has a staircase-like shape

• linear: the function is piecewise linear between given x’s

• spline: the function is a smooth function between giveb x’s with con-
tinuous first and second derivatives.

Table functions are evaluated as a normal function:

table f = spline({0.00, 0.00}, {0.1, 0.305}, {0.2, 0.545},
{0.3, 0.72}, {0.4, 0.835}, {0.5, 0.905},
{0.6, 0.945}, {0.7, 0.97}, {0.8, 0.985},
{0.9, 1.00}, {1, 1.00})

var x = 1.0

x’= -f(x)

The arguments to the table function definition need not be constants,
although all table functions are defined when the model is initialised, so they
may not contain auxiliaries.

table f = regular spline(a0, a1, 2*a3)

2.8 Output

Results from a model can be printed to the programme’s standard output
using the print statement:

print header="Header Text" footer="Footer Text" leader="Leader Text"
trailer="Trailer Text" separator="Seperator" expr1, ..., exprn

The header is printed before any output, the trailer afterwards. Each line
starts with an optional leader and ends with an optional trailaer. Output
items are separated by separator.

As an example, this prints out an HTML table.

print header="Content-type: text/html\n\n<html><body>\n<table>"
separator="</td><td>"
leader="<tr><td>"
trailer="</td></tr>"
footer="</table>\n</body></html>"
t, x

9

2.9 Options

The option statement allows you to change numerical and other parameters:

option opt = val, ..., opt = val

where values of opt may be

• tstop: the upper end of the integration interval

• tstep: the lower end of the integration interval

• epsilon: the (relative) integrator tolerance

• outstep: the average interval between output

• histsize: the size of the history buffer

val may be a numerical or string constant — if the latter then it must be
enclosed in quotation marks. For example:

option tstart=1970, tstop=1986, outstep=0.5

10

Chapter 3

Advanced Usage

3.1 Arrays

It is often useful to be able to disaggregate variables: for example, . Another
case is where you wish to solve a problem for several different values of the
same parameter and plot all results together. dde allows variables to be
array : this equivalent to putting a subscript on variables.

Arrays have dimensions. dde allows two sorts of dimensions, ordered
dimensions where the order is important (e.g. layers of soil) with numerical
subscript and unordered dimensions where order is unimportant (e.g. regions
in country). You first have to declare the possible array dimensions:

dimension layer = 0:10
dimension region = {southeast, soutwest, northeast, northwest,

westmids, eastmids, easteng, yorkshumb,
london, scotland, wales}

Here, layer is an ordered dimension, region is unordered. You can use dim
as an abbreviation for dimension.

Having defined dimensions, you can use them to refer to dimensions of
variables:

state water[layer] = {200, 100, 100, 100, 100, 100, 100, 100, 100, 100.0}
...
state population[region] = 10000
...
auxiliary migration[southeast] = 0
...
state’ = births - deaths + migration
...
water[0]’ = -evaporation
water[1]’ = diffusion[1]
...

11

If you omit any dimensions from an array variable, it is assumed that you
want all possible subscripts...

Array variables may be multiple-dimensional:

state Nitrogen[region,layer] = 0

Here, all elements of Nitrogen are set to zero.

3.2 Control statements

dde only has one control statement, if...then...else...end. The syntax
is:

if condition then
statement1
...
statementn

[else
statement1
...
statementn]

end

The then part is optional. Don’t overdo use of if...then statements.
Related to the if...then statement is the while...do statement.

while condition do
statement1
...
statementn

end

It keeps executing the block statements as long as the condition is true.
The for loop structure can be used to execute a block of code a pre-

determined number of times. It has number of forms:

for indexvbl in dimension do
statement1
...
statementn

end

for indexvbl from expr1 to expr2 do
statement1
...
statementn

end

12

In each case indexvbl is a special sort of auxiliary variable that can only
take on integer values. It has to be declared, thus:

index variable

The first form of the for loop is useful for unordered dimensions, the
second for ordered dimensions.

3.3 User-defined Function

You can define your own functions, thus:

function name(arg1, ..., argn)
statement1
...
statementn

end

It is only worth defining functions if they are going to be used for more than
one set of arguments. The result of the last statement is returned as the
result of the function. For example:

function hyperb(x)
(x + sqrt(1 - x*x))/2
end

13

Chapter 4

Running dde

4.1 Invoking the programme

The usage for dde is:

dde -v -g -Dparam=value -E -f outputType -s sourceType
file1.dde ... filen.dde

The -v flag tells dde to produce verbose output; the -g flag turns on debug-
ging features.

The -D flag allows you to over-ride parameter definitions from the com-
mand line: for example, -Dtau=7.5 sets the parameter tau (if it exists) to
7.5.

The -f flag NOT YET IMPLEMENTED instructs dde to convert the
model into a file of type outputType, where outputType may be

• ddesolve: a C file for use with DDESolve or ddecgi.

• solv95: a C file for use with solv95.

• js: a JavaScript file that can be run with SpiderMonkey (REF)

• asp: a JavaScript file that can be run with Sun’s ASP

The -s flag over-rides the input source type. NOT YET IMPLEMENTED.
The -E flag NOT YET IMPLEMENTED instructs dde to look for an

environment variable called QUERY_STRING: if it can be found, dde attempts
to parse it to look for parameter values which then over-ride any previous
definitions (including via -D flags). This allows you to use dde in CGI
applications.

All output is sent to the terminal, including output from print state-
ments

14

4.2 Run files

NOT YET IMPLEMENTED.

4.3 When Things Go wrong...

To be done...

15

Chapter 5

Example Models

5.1 Blowfly DDE Model

option tstart = 0.0, tstop = 300, outstep = .1

param P = 10.0 label="Product of max. fecundity and juvenile survival."
param tau = 12.0 label="Development time."
param delta = 0.25 label="Per capita death rate"
param A0 = 300 label="Fecundity decay constant."
param N0 = 100.0 label="Initial population."

var A = N0 delay scale=0.0
aux Alag

Alag = A(t - tau)
A’= P*Alag*exp(-Alag/A0) - delta*A

print t, A, A(t - tau)

5.2 Simple Lotka-Voltera Predator-Prey ODE Model

param alpha = 0.005
param delta = 0.2
param beta = 1.0
param gamma = 0.02
param N0 = 100
param P0 = 100

state N = N0
state P = P0

16

N’ = beta*N - gamma*N*P
P’ = alpha*N*P - delta*P

print t, N, P

option tstart=0, tstop=300

5.3 Kaibab Plateau Model

param Area = 800000
param Food_max = 4.8e008
param Food_per_deer_normal = 1000

table Deer_fractional_increase_f = spline({0,-0.5}, {0.4,-0.15}, {0.8,0},
{1.2,0.1}, {1.6,0.16}, {2,0.2})

table Deer_kills_p_predator_f = spline({0,0}, {0.005,5}, {0.01,10},
{0.015,14}, {0.02,17.5}, {0.025,20})

table Food_consumed_p_deer_f = spline({0,0.5}, {0.1,450}, {0.2,810}, {0.3,1140},
{0.4,1340}, {0.5,1540}, {0.6,1670}, {0.7,1790},

{0.8,1880}, {0.9,1960}, {1,2000}, {1.1,2000}, {1.2,2000})
table Food_regeneration_time_f = spline({0,35}, {0.25,15}, {0.5,5},

{0.75,1.5}, {1,1})
table Fraction_harvest_p_yr_f = linear({1900,0}, {1905,0}, {1910,0.2}, {1915,0.2},

{1920,0.2}, {1925,0.2}, {1930,0.2}, {1935,0.2},
{1940,0.2}, {1945,0.2}, {1950,0.2})

table Predator_fractional_increase_f = spline({0,-0.2}, {5,0}, {10,0.08},
{15,0.14}, {20,0.18})

state Deer = 4000
state Food = Area*590
state Predators = 160

aux Time = t

aux Deer_density = Deer/Area
aux Deer_kills_per_predator = Deer_kills_p_predator_f(Deer_density)
aux Deer_predation_rate = Predators*Deer_kills_per_predator

aux Food_per_deer_ratio = (Food/Deer)/(Food_per_deer_normal)
aux Deer_fractional_increase = Deer_fractional_increase_f(Food_per_deer_ratio)
aux Deer_net_increase = Deer*Deer_fractional_increase

aux Fraction_harvested_p_yr = Fraction_harvest_p_yr_f(Time)

17

aux Food_consumed_p_deer = Food_consumed_p_deer_f(Food_per_deer_ratio)
aux Food_consumption_rate = Deer*Food_consumed_p_deer

aux Food_regeneration_time = Food_regeneration_time_f(Food/Food_max)
aux Food_regeneration_rate = (Food_max - Food)/Food_regeneration_time

aux Predator_fractional_increase = Predator_fractional_increase_f(Deer_kills_per_predator)
aux Predator_net_increase = Predators*Predator_fractional_increase
aux Predator_harvest = Predators*Fraction_harvested_p_yr

Deer’= Deer_net_increase - Deer_predation_rate
Food’= Food_regeneration_rate - Food_consumption_rate
Predators’= Predator_net_increase - Predator_harvest

print t, Deer, Food, Predators

option tstart=1900, tstop=1950

5.4 Rinaldi’s Model of Love Dynamics

state L=0, P=0, Z=0

param alpha1 = 3
param alpha2 = 1
param alpha3 = 0.1

param beta1 = 1
param beta2 = 5
param beta3 = 10

param gamma = 1
param delta = 1
param A_L = 2
param A_P = -1

L’= -alpha1*L + beta1*(P*(1 - (P/gamma)^2) + A_P)
P’= -alpha2*P + beta2*(L + A_L/(1 + delta*Z))
Z’= -alpha3*Z + beta3*P

print t, L, P, Z

option tstart=0, tstop=20, outstep=0.1

18

5.5 Delay logistic model

dimension problem = {ex3a, ex3b, ex3c, ex3d}

param lambda[problem] = {1.5, 2.0, 2.5, 3.0}

state y[problem] = 0.0 delay

aux ylag[problem] = (t>1)?y[problem](t-1):t-1
y’ = -lambda*ylag*(1 + y)

print t, y

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

y

Time

Delay logistic equation

lambda=1.5
lambda=2

lambda=2.5
lambda=3

Figure 5.1: Numerical solution of the delay logistic model

19

